7.5
Rational Expressions - Complex Fractions

Objective: Simplify complex fractions by multiplying each term by the
least common denominator.

Complex fractions have fractions in either the numerator, or denominator, or usu-
ally both. These fractions can be simplified in one of two ways. This will be illus-
trated first with integers, then we will consider how the process can be expanded
to include expressions with variables.

The first method uses order of operations to simplify the numerator and denomi-
nator first, then divide the two resulting fractions by multiplying by the recip-
rocal.
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The process above works just fine to simplify, but between getting common
denominators, taking reciprocals, and reducing, it can be a very involved process.
Generally we prefer a different method, to multiply the numerator and denomi-
nator of the large fraction (in effect each term in the complex fraction) by the
least common denominator (LCD). This will allow us to reduce and clear the
small fractions. We will simplify the same problem using this second method.
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Clearly the second method is a much cleaner and faster method to arrive at our
solution. It is the method we will use when simplifying with variables as well. We
will first find the LCD of the small fractions, and multiply each term by this LCD
so we can clear the small fractions and simplify.

Example 3.

2~ Identify LCD (use highest exponent)

LCD=2% Multiply each term by LCD
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o) 1
Multipl
<x2) — ultiply
2 _
:L’2 1 Factor
2 —x
EDE=D  pivideout (z — 1) factor
z(r—1)
v 1_ 1 Our Solution

The process is the same if the LCD is a binomial, we will need to distribute

Z1=——  Multiply each term by LCD, (x +4)
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% Distribute
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% Our Solution

The more fractions we have in our problem, the more we repeat the same process.

Example 4.
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LCD =a%? Multiply each term by LCD
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Reduce each fraction (subtract exponents)
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Our Solution

462 + a3b* — a b?
World View Note: Sophie Germain is one of the most famous women in mathe-
matics, many primes, which are important to finding an LCD, carry her name.
Germain primes are prime numbers where one more than double the prime
number is also prime, for example 3 is prime and so is 2 - 3 + 1 = 7 prime. The

largest known Germain prime (at the time of printing) is 183027 - 226540 — 1 which
has 79911 digits!

Some problems may require us to FOIL as we simplify. To avoid sign errors, if
there is a binomial in the numerator, we will first distribute the negative through
the numerator.

Example 5.
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LCD=(z+3)(x—3) Multiply each term by LCD
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% Factor out 2 in denominator
1 Divide out common factor 2
2(z2+9)
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PR~ Our Solution

If there are negative exponents in an expression we will have to first convert these
negative exponents into fractions. Remember, the exponent is only on the factor
it is attached to, not the whole term.

Example 6.
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2 tam Our Solution
m3+44

Once we convert each negative exponent into a fraction, the problem solves
exactly like the other complex fraction problems.
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7.5 Practice - Complex Fractions

Solve.
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Simplify each of the following fractional expressions.
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7.5

Answers - Complex Fractions
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